

20759—90

621.436.001:006.354

	20759—90
Diesel locomotive engines. Technical diagnostics and forecast of service life by means of oil spectral analysis General requirements 31 2000	
	01.07.91
	01.07.96

. 1.1.

, , . 1.2.

; 2 , , , ,

® , 1991

2-2368

```
2.
2.1.
2.1 ,
2.1.2.
                                                  0,5
                                                                0,5 .
2.1.3.
2.2.
                                                     ( 1024);
24104;
24104;
                                        -20
-2 0
                             -1—1;
                                         -1, 6—0;
                                   . 1);
. 2);
                                                                      Ø13,2±0,1
Сфера R 3 ± 0,1
                                      Ø2,5±0,1
           20...25
                                                    Черт. 2
           Черт 1
                                                                  5962
  18300;
```

20759-90

```
20759—90 . 3
                                                                     1.
                                                                    2.
                3.
2.3.
2.3.1.
2.3.2.
2.3.3.
2.3.4.
                                                                      300 / .
                                                               3
                                    4.
2.3.5.
                           (
                                3 /)
5.
2.3.6.
2.3.7.
                                         4 .
2.4.
2.4.1.
                       10
2.4.2.
                                                     )
                                                                         (1)
                                      f=I
```

(

2*

% —

. 4 20759—90

2.6.

```
(2)
   2.4.3.
                                 10 /
                                                                             5%,
                                     5%,
   2.4.4.
:
;
                                                ).
   2.4.5.
   2.4 6.
   2.5.
2.5 1.
   2 5 2.
15%
                         7.
        1
                           ),
```

2.6.1.							20			
2.6.2.							30	•		-
,					,				,	
2.7. 2.7.1.		•								
		,								-
2.7.2.										
2.7.3.	,					-3		•		
			;							-
			;			,				
2.7.4.			,							_
1,		2).							{ .	-
2.8, 2.8.1.										
2.8.2.			,				`			
5%. 2.8.3.			()		15%	_
2.0.3.			,						13 /0	- -
•										
		,								_
2.8.4.										_
				())			
		(/)								
	3.									
3.1.									()

3-2368

```
3.2.
3.3.
                 . 2.
3.4.
                    (3)
                      , /-
                                      (
(1)
                                                            i-ro
                      k-u
                     /-
                                                              (2);
   k —
m —
                                      t-ro
6)
3.5.
                                     3
(
                         3
)
                          ),
                                                    { 3)
                                ( <sub>3</sub>),
        <sub>3</sub>< <sub>1</sub>
   8
```

20759-90

4.1. 4.2.

4.3. . 2.

4.4. ()

(4)

r-N —

(L_{0CT}) 4.5.

(5)

G_{aon}-

op n— / . ; L—

4.6. $(G_{Aon\cdot yC}n)$

G 4. * (6)

<7)

9.

I

-3; -5; -7

1

1-

%		!	-			-	-3	
1	2	3 1	4	&	6	7		&

2-

, /

					,	•			
to	12	13	14	15	16	17	18	19	20

					Ι	_	
	1	2	3	4	-	1	-
1							
2						!	
3					!		
9							
10						i 1	

1-

1		-3			
1	2	3	4	5	6
	1				

2-

, /

					, -			
7	3	9	10	11	12	13	14	15

4

1 2 3 4 5 6 7 8 9 10

:

1. Z 3 4. 5. .

;1 ;1C

		_			 		
KapeTi 1							
	I						
	1						
1							
2							
3							
4							
5							
6							
7							
8				 	 		
9							
10	!		1				

1	
2	
3] 1
1	12
5	13

```
20759—90 . II
```

```
( ) ( )
1 6—09—5346—88
```

```
2. 16539

3 6— 9—£332—88

4 6—69—1£ —87

5 6—[9—4272—84

8 6—09—425—75

7. 94 2 8
```

3

```
( -7 )
20 <sup>2</sup>.
18 2 5° .
±3° ,
```

80%

0,315—1,0 1 100). 50 , (

: —18—1, —43 — ; — ; — 0,5 - ;

;

(220± ±2 2) , 50 2 50 3/ -28. 1024 -1,6—) ; -2 0 60 3 .; ; -35

	(/)							
11	12	13	14	15	1 '6	17		
3 300 100 3 30 10 5	10 3 30 10	10 5 3 1 10 50 30	£ 0 10 5 3 1 100 50	50 30 10 5 300 3	100 50 30 100 5 3	3D0 100 50 10 5 3		

() 3 /. (X)

*— , . 1.

SnOa.

Na 13 40 10 / . Fea0₃.

(2*55,85+3*16) 10*400 ^ ,, *Fe.O. - 3.5535 * 1000 -5'? '

2.

16 40 3 50 /.

3. 15 4 0 3 /.

(118,69+2*16) 3*400

 $X_{\text{SnO,}'}$ $\frac{(118,69+2.10)}{118,69}$ $\times 1000$ -1,5 .

Fea0₃ - 1,7 - 3 / Fe -0,5 - 1 / (-300 - 150 /) - 43,2 - 130 / Sn0₂- 1,5 - 3 / Sn - 17,5 - 30 / 1 - 7,6 - 10 / 1 Si0₂- 43 -5 r/ Si

```
(
               )
                                                          )
                       1
                                                     (
1 [> / ..
11
       4*00
                                                               (9)
                                    11
01
                                   -= 9 .
                              5,7
                                   Hs 0 2
                             0,5*400
                                   =40
                      AG,
                              5,0
                                        4
                             1,5*400
                                   = 120 t.
                               5,0
                                             jNb 1 l
                                                       400
                      400—( _{(11}+ + _{004}), , .
                         =400-(119+40-120)=121 .
                                          { , ,
    )
                   ( .
                            1).
                                       ? 12, 13, 14, 15, 16, 17.
, 02, 03, 4, 5, 06 07
```

()

2 11 45 14 40 5 49 50 2 100; 10 100; . 2 10 6 310 2, 60 62 2 6 5 VI00 65/100 50/1 5)/1 0 1 00/200 100/200 2] 4 0/100 25/70 35/70 5Ó/1 50/100 4 0/60 25/100 25/1 15/20 4 /1 0 15/25 2 / 25/50 2.0^30 15/10 2) 0 25/5} 5/10 5/10 5/10 5/10 5/10 5/10 10/15 5/10 10/15 10/15 10/20 10/20 10/20 10/20 10/2 0 10/20

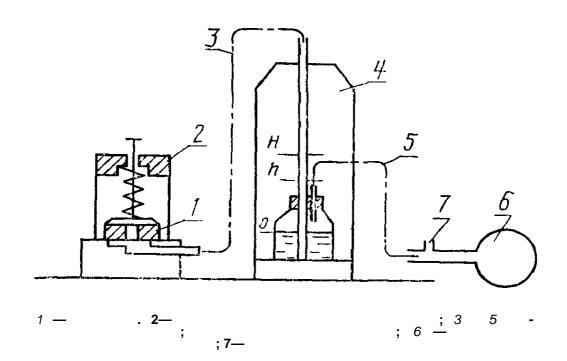
\, -

, - 4 (1 100), ();

,

. 1§ 20759—90

10—12


(, Fe)

15—20

(, Fe)

1,5—2

6,

1 (/=*4).

0) (1) (t) 2 (-1 ()** -2* 2— 1 -3—2 -2—2 3 4 5 -3 2 3 2 2 2 -3— 5 9 -2-1 -1 2-4) 5-7 *2 -3 -3, 8—1C 11 — 13 2 30 7 —16 17—19 1 3 26 20-22 €58 0-5 , / 5—10 10—20 9 3 1 2 20—4 0 40-80 ">80 1 <--40 2 1505 $\begin{array}{r}
- 40-20 \\
- 20-10 \\
- 10-0
\end{array}$ /

							. 3
						(1)	
	1					(1)	
				1 ()**	2()**
	1		2			4	5
		5. 0— 6. 10- 7. 2 0	-2 -4 3		70 50 3 2 5	34 5 5 3	
**	* — 3; -2— 3 4			; - . ; 2; 3-	3 — —		
2.			•				4
-	- 1	-	- (. 3. 2)	(-3)	-	- ,	, /
1 2 3 4 5	1123 1123 1176 1176 1112 1112		1 1 3 2 2	13 13 4 4 20 20		7 50 7 50 25 25	0 30 0 -10 10 23
3.	1		l	l	(3),		1
2 2 = 1 _.		L					
İ	=1,	44.400 =	=^1	4 0500			
	2 ['= =1	44+129+ <i>i</i> *	751+1105+470+	·1=2500,			
		2 =2+1- *	+22+24+15+1=65	5,			
1, 4),	*,1 ,1	/= 1.	* :			112	23 (
, -/,			*11; jf =	2;			

4 = 451; fl^-13;

41=1425; 41=26;

= 1505; ej| — 14.

(3).

26.

2500	44*65 451*65	7-65	32*65
" 65	2*2500 13*2500	9-2500	5*2500 ~~
	=38,5-0,572-0,9-0,02-0,1	166=0,066;	
,2500	751-65 450-65	1425*65	1505*65
65	22*2500 J 9*2500	26-2500	14*2500
	=38,5-0,89-1,30-1,42-2	,79=176,0;	
2500	751-65 450-65	7-65	32*65
65	22-2500 ' 9-2500	9-2500	1*2500 "
	=38,5-0,89-1,30-0,90-0	,83=33,2;	
2500	129*65 54*65	61 *65	870*65
¹ " 65	1-2500 1-2500	10*2500	34-2500
	=38,5-3,35-1,40-0,158-0	,665=18,9;	
2500	129 69 54-65	61 *65	50*63
¹ 65	1-2500 ' 1-2500	10-2500	5*2500 "
	20 5+2 25+4 40+0 450+0	00 7 44	

-38,5*3,35*1,40*0,158*0,26=7,41.

```
4.

Cj, , , , 10 / »! (

-2, -3;

;

( , , ).
```

1 () , , ([']
2 ()

1	112	1 ()
2	112 5	2 ()
3	1176	1 ()
4	1176	1(`)
5	1112	1 (
6	1112	2 ()

) -3 () -N, (10)(-3) N — £? < , . -/; -3 , / . . 4 8, -3 JV --3)

.

?
$$...$$
=25,0+ — (50-25, 0) =27,5 i/;
tfc_p.v=6.5+-~-(7-6,5)=6,6 /;
^ .\=25,2+—^-(50—25,2)=31,4 i/i;
'(.^=-20.1+-^-(25-20.1)=20,3,7;
^ pA = 15,5-f $\frac{1}{10}$ (25—15,5)=16,0 l/.

$$^{1} = \frac{1000}{8.2} - 10=122-10=112$$
 -3;

$$^{\wedge} = _{31,4}^{-\text{TM}} ^{\circ} - _{4=22-4=18} -3;$$

	-3 (-3)	-	- 3, /	_	-3, <i>i</i>	-3	
-		- (N—1) *	w -			-	-
1123 1123	10 1	8,3 25	8,2 27,5	-1 -1	1	122	1 2 26
1176	4	6,5	6,6	-3	7CD	106	102
1176 1112	4 20	25,2 2 0,1	21,4 2 0,3	-3 -3	70 0 SCO	22 25]
1112	20	15,5	16,0	-2	5 0	31	11

2.

11.10.90 2637

3. — 1995 .

4. 20759—75

5. - -

,	,
5\$ 52—67 9428— 73 165(39— 18300—87 241C 4—88 6—00— 4 26—75 ©-09—160 3^87 6—00—4272— 84 6-00- 5346—88 6—095832—88	2 2 2 2 22 2.2 2 2 2 2 2 2 2

. J1.